
Do Regularizers improve “Reproducibility” in Deep Neural Networks?

Abstract

A known problem with training deep neural networks,
mostly parameterized by connection weights at each layer,
is that of finding an appropriate model complexity under the
empirical risk minimization setting. Ideally, the goal is for
the model to produce a satisfactory indication of high accu-
racy while retaining the attractive property of performance
reproducibility (generalization), at least, on a test-set as-
sumed to be drawn from the same distribution as the train-
set. In an attempt to address such problems, a lot of regular-
ization methods have been proposed. In this work, we em-
pirically study regularization and reproducibility from the
perspective of test-set prediction consistency across several
training runs. We then introduce effective test accuracy as
a trust-measure on the predictions made during training,
which can supplement conventional test accuracy as a met-
ric for reporting performance. Specifically, we use the met-
ric to quantify the effect that common categories of regu-
larizers used in training deep feed-forward neural networks
have on consistent (reproducible) predictions. Our findings
across multiple benchmark image recognition datasets indi-
cate that the structure of a feed-forward neural network is a
higher weighted factor than other explicitly added regular-
ization methods for improving reproducibility.

1. Introduction

Intuitively, we start with the hypothesis that regulariz-
ers induce some amount of stability in the learning pro-
cess, the learning process determines the weights (represen-
tations) in the neural network, and the weights determine
the predictions of the network. Then if we were to attenuate
most sources of variability during training, by controlling
the random generator seeds used, such as: those used in the
random initialization and sampling process; we would ex-
pect that compared to when the explicitly added regulariz-
ers were absent, we should obtain some amount of increased
reproducibility on the network’s predictions (less prediction
difference) on the test set across training runs, irrespective
of the number of times we were to train the network.

In this work, we attempt to prove the aforementioned in-
tuitive expectation. Our empirical findings show that such

hypothesis can be significantly rejected. We find that, de-
spite recommended seed control, the model (representa-
tions) found by the neural network learning process varies
each time it is trained. Interestingly, even though the test ac-
curacy across training runs seem close with respect to some
decimal places. The test prediction difference most always
varies. To capture the effect of such variability when train-
ing deep neural networks, we introduce a newer metric, Ef-
fective Test Accuracy, as a better measure of trusting test
performance results compared to using only the popular Test
Accuracy metric.

1.1. Background

In the empirical risk minimization (maximum likelihood
estimation (MLE)) setting [40], a common introduction to
the problem of underfitting, overfitting and generalization
in machine learning theory, most always starts with a back-
ground concept on the trade-off between bias error and vari-
ance error [12]. A high bias error indicates underfitting on
the train dataset. A high variance error indicates underfit-
ting on the test dataset or overfitting on the train dataset.
Generalization error is a combination of both the bias and
variance errors. If both errors are large, generalization is
poor [7]. The goal is to find a model that appropriately bal-
ances this bias-variance trade-off or in other words, a model
with an appropriate complexity. Learning theory is usually
concerned with confidence bounds on the generalization er-
ror [6, 11, 14] and how to construct algorithms that control
the generalization ability of learning [38]. Generally, in
learning with neural networks as a class of prediction rules,
the model complexity is influenced by a number of factors.

Particularly, for feed-forward neural networks [1], as the
number of layers, hidden neurons, initial input neurons, and
final output neurons in the network increase, the number
of connection-weight parameters also increase. Therefore,
bias error has a tendency of reducing, while increasing vari-
ance error (overfitting), hence increased generalization error
during training. Therefore, such models have been referred
to as high capacity models (models that can memorize the
training data), with extreme tendency to overfit.

In a sense, the number of learnable parameters is fixed.
Therefore, the task of reducing overfitting, then simplifies
to controlling the complexity of the selected model class
for a particular training dataset by constraining the values
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of the connection-weight parameters [8]. It has been shown
in [5] that the magnitude values of the weights determine the
generalization performance of neural networks, instead of
the number of weights. Approaches that control the model
complexity of learning in neural networks and other ma-
chine learning models are generally known under the name
of regularization. The aim here is to try to reduce the bias
error and at the same time reduce the variance error, with-
out changing the number of connection-weight parameters
input to each layer.

The first general approach is to identify an appropriate
complexity (or select a best model) by varying (increas-
ing or reducing) or changing an hyper-parameter that is
linked to regularization and then monitoring performance
on both train and validation data, during training. This
is known as model selection and appears in techniques of
early-stopping, cross-validation or structural risk minimiza-
tion [3, 16, 39, 40].

The second general approach attempts to add an esti-
mated measure of the complexity of the connection-weight
parameters or other appropriate parameters as a form of
noise to the training error (empirical risk (loss) or objec-
tive function), changing the unconstrained risk minimiza-
tion problem to a constrained optimization problem or reg-
ularized loss function [25, 39]. Methods in this approach
can also be viewed as injecting a form of adversarial noise
(perturbations) to the neurons (input and hidden) and then
minimizing either a constrained or unconstrained empirical
risk [7]. Some methods that standalone in this approach
are the use of dropout [41], and data augmentation [16].
In bayesian terms, such measures of complexity can be
viewed as representing a form of prior knowledge over the
connection-weights and can be viewed as network stabiliz-
ers [42]. In fact, relatively recent methods in this loss reg-
ularization approach are presented as smoothening the loss
landscape of the neural network [9, 13, 15].

The third general approach is to take regularization as a
structural problem of the neural network. The word struc-
ture or structural, here is used to mean an add-on compo-
nent to the end-to-end feed-forward network architecture.
Four popular methods in this category are: the use of con-
volutions leading to convolutional layers [27], residual con-
nections leading to residual layers [19], normalization lead-
ing to normalization layers and weight initialization meth-
ods [4]. The last three methods can be viewed as adding
useful structural noise (perturbations) to the neurons (input
and hidden) at each layer.

The fourth general approach is to create an ensemble of
separate neural networks, with different connection-weights
and then average their predictions, also known as model
combination [16].

The third and fourth approaches are often known to em-
pirically reduce variance error without increasing bias error.

Almost all regularization methods have hyper-
parameter(s) that need to be configured before the learning
process begins. Also, several methods can be viewed as
belonging to one or more of these general approaches or
can be used together. Regularization effectively smoothens
the non-convex loss landscape of the deep network to
learn appropriate weight values within a certain range,
helping the network converge faster and more stably during
training [23, 34]. The overarching effect of regularization
is simply then to control the model complexity by con-
straining the values of the connection-weight parameters
to appropriate ranges, in order to improve the predictive
performance of the model on the train and test datasets,
such that the effective model complexity becomes lesser
than the number of learnable parameters in the model.

1.2. Related works

In the following, without being exhaustive, we expand
on some of the common and explicit regularization methods
used in neural networks as discussed above and then branch
on to a discussion on reproducibility.

Loss or Norm Regularization Compared to L1 norm
regularization (laplace prior) which is useful for feature se-
lection, L2 norm regularization (gaussian prior) is a rec-
ommended loss regularization method in deep learning. It
is also known as weight-decay or Tikohonov regulariza-
tion [7]. It is also a form of bayesian regularization (max-
imum a posteriori estimation (MAP)) [42]. Like all con-
straint based techniques [16], at the cost of increasing the
bias error, it controls the complexity of the neural network
model by the L2 norm constraint objective that the weight
parameters should decay close to zero values. To achieve
this, a constrain or lagrangian hyperparameter λ has to be
set leading to a trade-off between minimizing the empiri-
cal risk and minimizing the weight norm, which is an esti-
mate of the largeness of the individual weight elements in
the connection weight tensor. Notwithstanding, one main
selling-point of norm regularizers is that they are cheap to
add, and often work well, as a form of strong convexity, if an
appropriate constrain parameter λ is found. Also, it is easy
to combine with other regularization approaches. A tighter
constrain, can lead to underfitting, and a very lax constrain
can lead to overfitting.

While not reducing the hyper-parameters to be tuned,
from the perspective of smoother loss surfaces, there are
other much more recent way of doing L2 norm regulariza-
tion that encourages the learning process (stochastic gradi-
ent descent (SGD)) to find weights that correspond to a flat-
ter minima instead of a sharper minima such as [9, 13, 26]

Another norm regularization method, used especially in
convolutional layers, is to constrain the norm of the gram
matrix of the connection weights to be orthogonal [4].

Input Normalization Normalizing the flow of batch in-
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put information in the neural network, is another way to im-
prove the generalization performance of neural networks.
Arguably the most popularized technique in this method
category is batch normalization [22]. However, normaliz-
ing across the batch dimension is not without its flaws lead-
ing to other preferred alternatives such as layer normaliza-
tion [2], instance normalization [37], and more generally
group normalization [43].

Typically, the act of normalization influences the val-
ues of the connection weights at each layer as proposed by
SGD, by introducing useful noise in the layers of the net-
work, and during optimization by inducing a smoothening
effect on the loss landscape [34].

Model Combination or Averaging This technique gen-
erally involves averaging by the convex combination of the
output predictions of a finite m number of separate neural
networks with the same training data input [10]. Interest-
ingly, most state-of-the-art results have been reported us-
ing ensembles [19, 22]. When the convex combination of
output predictions is through a posterior weight probabil-
ity distribution, this is known as bayesian voting or av-
eraging [44] which is based on the bayesian notion that
the connection-weight parameter is a random variable with
a distribution. Although guaranteed to give better perfor-
mance as the number of combined models gets larger (an
infinite ensemble), this method of model combination in-
volves the use of subjective prior probability distributions
on the connection weights and is computationally more ex-
pensive both from a training and testing perspective, mak-
ing them undesirable in applications where prediction time
needs to be quick [28,31,35]. However, a single neural net-
work model, can itself be viewed as an ensemble [16, 39],
therefore other approaches that exploit this fact such as
dropout and stochastic weight averaging (SWA) are more
preferred [23] and are standard components in mainstream
deep learning frameworks like Torch.

Generalization and Reproducibility We note that the
use of the word reproducibility here, indicates consistency
in a neural network’s predictions at different training-runs.
Variable predictions of (or explanations by) the network on
the same test-data are undesirable leading to untrustworthi-
ness in practice [18, 20, 33]. Interestingly, it turns out that
generalization and reproducibility have the same basic im-
plication of generality [17].

Statements on generalization of deep neural networks are
usually benchmarked on improving prediction consistency
with respect to the ground truth values of the test set (Test
Accuracy) across several training runs (even if it is just by
2%) [3, 4]. A closely related study on generalization is out-
of-distribution robustness, where trust measures on a neu-
ral network’s confidence about its predictions can be used
to evaluate (or calibrate) its predictive uncertainty [21, 24].
Such works involve the use of loss regularizers and ensem-

bles [24,36], and are benchmarked on test-set accuracy. No-
tably, out-of-distribution confidence scores tell us nothing
about consistency on test predictions across multiple train-
ing runs. More recently, [3] argues that regularization by
weight decay and data augmentation methods in deep neu-
ral networks fundamentally increases test accuracy perfor-
mance over all classes at the cost of reduced test accuracy
over certain classes, hence generalization obtained by these
methods are at the cost of increased class-dependent bias er-
ror. This can be viewed as a form of irreproducibility [33].

On the other hand, compared to the statistical perspec-
tive of replication (as we imply in this work), statements on
reproducibility, are mostly considered from a technical per-
spective of replicating experiments carried out under certain
configurations [30, 32]. The summary of all this reduces
to the implicit fact that reproducibility can be viewed as
a regularization problem. Consequently, we would like to
quantify, how much trust we can have on using one regu-
larizer over the other one, in helping us train networks with
much more consistent predictions. One practical motiva-
tion for this is that: there are many applications that care
about safety, trust and consistency in diagnosis, detections
and recommendations [29] that make use of feed-forward
networks. In such domains, a flip in prediction from 0 to 1,
could cost lives and money.

1.3. This work

In this work, we empirically study the relationship
that certain regularizers have with reproducibility in deep
feed-forward neural networks. Particularly (omitting data-
augmentation and the combination of separate models), we
will restrict our study to image recognition problems, and
expect to move from fully connected network to convolu-
tional networks. Our objectives are as follows:
1. identify certain appropriate and robust measures of re-

producibility, such as prediction difference or variance
with respect to test accuracy.

2. study and compare the influence of common regulariz-
ers on reproducibility in benchmark image recognition
datasets, such as MNIST, FMNIST, CIFAR-10, CIFAR-
100, SVHN.

3. make statements on the trade-off between increase in test
accuracy and the reproducibility obtained by using such
regularizers both in isolation and in combination with
other regularizers.

2. Training Metrics

In supervised learning tasks, the most popular training
metric used as an unbiased estimation of generalization per-
formance is the 0/1 test-set accuracy. Given a test dataset
with samples of size N . Assume, P number of training
runs are carried out, such that q = 1, . . . ,P . The total
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number of paired combinations of predictions C, such that
c = 1, . . . , C, obtained will be C = PC 2.

Test Accuracy The expectation on the similarity between
any ŷq and the ground-truth y for a given test-set of sample
size N .

aq =
1

N

N∑
n=1

I
[
yn = ŷn

]
= E

[
yn = ŷn

]
(1)

Consequently, when considering the consistency of pre-
dictions across several training runs, we can modify the test-
accuracy equation to the following metrics defined below:

Test Prediction Difference The expectation on the dif-
ference between any u, v ∈ q, such that u ̸= v, for a given
test-set of sample size N .

zc =
1

N

N∑
n=1

I
[
ŷun ̸= ŷvn

]
= E

[
ŷun ̸= ŷvn

]
(2)

Effective Test Accuracy The difference between the
mean test accuracy and mean test prediction difference
across P training runs.

Ae =
1

P

P∑
q=1

aq −
1

C

C∑
c=1

zc = E∼q

[
aq
]
− E∼c

[
zc
]

(3)

This metric tells us how much we should trust the test
accuracy. If the mean test prediction difference is far higher
than the mean test accuracy, then the effective test accuracy
Ae would move close to −1. On the other hand, if the mean
test prediction difference is far lower than the mean test ac-
curacy, then Ae would move close to 1.

3. Experimental Setup
Our experiment design for this analysis is described, as

follows, below. Given time constraints for this project, we
omitted convolutional layers, group-normalization, other
types of loss regularizers, and omitted the use of drop-out
and stochastic depth.

This left for each dataset, a total of 36 experiments, com-
paring different explicit regularizers under the use of three
different optimizers, leading to total maximum of 108 ex-
periments. Our Baseline: 2-layer fully connected network
with only SGD (no explicit regularization).

Before running the main experiments, we found
learning-rate hyper-parameter settings that worked very
well, for the base optimizers involved in our experimental
setup. The other optimizer hyper-parameters were left at
their recommended default values. For all datasets consid-
ered, the learning rate for each optimizer was set as follows:

10−1 for SGD, 10−2 for SGD-MOM, 3×10−4 for ADAM,
except for FMNIST where 10−3 was used for ADAM. Also,
we selected the number of epochs for each experiment to be
around the epoch at which we found overfitting to occur
(set to 10 for SVHN, CIFAR-10, and CIFAR-100; set to 25
for MNIST and FMNIST). The total number of runs was
set to P = 5 for each experiment. This value was selected
as a trade-off between time to run experiments and number
of prediction combinations C = 10 obtainable. Batch-size
was fixed to 128. The weight-decay was set to λ = 10−4.
A seed number of 0 was used for all experiments.

We computed a statistical T-test (Wilcoxon signed-rank
test) on the prediction difference combinations across the 5
runs. to determine if there is a statistically significant dif-
ference between two independent sample groups. The null
hypothesis is that: the paired zc come from the same dis-
tribution (that is: not significantly different). The alternate
hypothesis is that: the paired zc do not come from the same
distribution (that is: significantly different). A p-value of
less than 0.05 would indicate that this test rejects the null
hypothesis at the 5% significance level. This means that
the prediction difference distribution falls within the range
of what would happen 95% of the time, described by the
alternate-hypothesis.

4. Main Results
The main results of our analysis, illustrated in Figures 1–

5 are arranged by the dataset considered. Each of these
figures is partitioned to illustrate six (6) main results. The
first result (top-left) shows the statistical test significance on
the prediction differences obtained in each experiment. The
second result (top-middle) shows the influence of the opti-
mizers on Ae for that dataset. The third result (top-right)
shows the influence of depth on Ae for that dataset. The
fourth result (bottom-left) shows the influence of the ab-
sence or presence of layer or batch normalization on Ae for
that dataset. The fifth result (bottom-middle) shows the in-
fluence of the absence or presence of weight-decay on Ae

for that dataset. The sixth result (bottom-right) shows the
influence of the absence or presence of residual connections
on Ae for that dataset.
Result 1. For all experiments, we found the test prediction

differences across training runs to be significant
for all datasets.

Result 2. The use of SGD variants like SGD-MOM and
ADAM slightly help to reduce the variance in the
observed effective test accuracy, possibly through
increased test-accuracy. Other than that, particu-
larly for CIFAR-100, there is no much difference
in the use of the three optimizers.

Result 3. Increasing fully-connected multi-layer depth has
significant effect on increasing test prediction dif-
ference. For MNIST, this effect is slightly mini-
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Dataset Optimizer Layers Normalization Weight Decay Residual Connection Ae

MNIST SGD 6 LAYER TRUE TRUE 0.970
FMNIST SGD-MOM 2 FALSE FALSE FALSE 0.818
SVHN ADAM 2 LAYER TRUE FALSE 0.731
CIFAR-10 ADAM 2 BATCH TRUE FALSE 0.262
CIFAR-100 ADAM 2 BATCH TRUE FALSE -0.276

Table 1. Best Results in Combination.

Dataset Optimizer Layers Normalization Weight Decay Residual Connection Ae

MNIST SGD 20 LAYER FALSE FALSE -0.382
FMNIST SGD-MOM 20 FALSE ANY FALSE -0.9
SVHN SGD 20 FALSE TRUE TRUE -0.396
CIFAR-10 ADAM 20 FALSE TRUE FALSE -0.9
CIFAR-100 ANY 20 FALSE ANY FALSE -0.99

Table 2. Worst Results in Combination.

mal.
Result 4. Normalizing information flow through the net-

work layers, across dimensions (layer or batch),
most always help to significantly reduce test pre-
diction difference, and increase test-accuracy. For
SVHN, layer normalization helped best in reduc-
ing the test prediction difference, while for the
other datasets, batch normalization, was the gen-
eral best in reducing test prediction difference.

Result 5. Weight decay seems to have little or no significant
effect on reducing the test prediction difference

Result 6. For SVHN, using residual connections in the
fully-connected network, although increased test
accuracy, yet had little effect on improving the ef-
fective test accuracy. For the other datasets, resid-
ual connections contributed significantly in stabi-
lizing the effective accuracy across experiments.

From the perspective of influence on Ae, the six results
above are the standalone performance of each explicit reg-
ularizer considered. However, as illustrated in Tables 1 and
2, we might also want to know, which regularizer combina-
tions gave the overall best and worst performance respect to
Ae.

5. Conclusion

In this paper, we focused on addressing the question: “do
the use of explicit regularizers in a deep feed-forward neural
network aid reproducibility (test prediction consistency or
generalization) across multiple training runs?” Our empiri-
cal investigation across multiple image recognition datasets
showed that compared to the network structure and the na-
ture of the dataset, explicit regularizers have little effect on
stabilizing test prediction differences. We also found that
the predictions of fully-connected networks are seldom re-
producible across training runs. While limitations on time

and computing resources constrained a comprehensive anal-
ysis with larger image datasets and network architectures,
we believe the analysis in this work is insightful. It would
be interesting to see what answers similar analysis under
such unconstrained settings would bring forth.

Technical Reproducibility Our source-code can
be found at https : / / github . com / apurva94 /

Reproducibility, and our results are publicly avail-
able at https://drive.google.com/drive/folders/

1VoKYXQwUDhXdoW3XaD8kNzdnvxVGSmQL?usp=sharing.
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